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ABSTRACT

Leading Lyapunov exponents and vectors are calculated for a turbulent baroclinic jet in a quasigeostrophic
model with O(105) degrees of freedom. The leading exponent is close to 0.4 day21, and the unstable subspace
has dimension between 30 and 40. The leading Lyapunov vectors exhibit a strong correlation of their potential
vorticity (PV) with the PV gradients of the unperturbed flow. These perturbations do not, however, appear to
be instabilities of smaller scale on the turbulent flow. Instead, they share the scales of the flow itself (at least
if measured along PV contours) and often simply represent local phase shifts or displacements of existing features
in the flow. Singular vectors constrained to the subspace of Lyapunov vectors are also calculated. Maximum
amplification factors over 2 days are, on average, about 6, 7.5, and 9 (compared to the factor of 2 implied by
the leading exponent) for subspaces of the leading 20, 35, and 60 Lyapunov vectors, respectively.

1. Introduction

Numerical models typically represent the governing
equations for the atmosphere or ocean as a set of cou-
pled, nonlinear ordinary differential equations. Given a
(time dependent) solution from a certain initial condi-
tion, a natural question is then the stability of that so-
lution to small perturbations of the initial condition. In
this problem, which generalizes familiar linear stability
analyses for steady flows, the Lyapunov vectors (LVs)
and Lyapunov exponents are the counterparts of the
linear modes and their growth rates; precise definitions
will be given below. This article presents the leading
LVs and exponents for a damped and driven quasigeo-
strophic flow with broad similarity to the atmospheric
midlatitude jet. Special emphasis will be given to the
structure of the LVs and their relation to the original,
unperturbed flow.

Aside from their theoretical interest, the Lyapunov
exponents provide information on the rate at which fore-
cast errors grow, and the LVs on the form that those
errors will assume, at least in the case that the forecast
model is reasonably accurate and the forecast errors are
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not too large. The LVs and exponents are therefore also
of interest in areas such as ensemble forecasting (Toth
and Kalnay 1997) and data assimilation (Swanson et al.
1998). Our specific motivation for calculating the lead-
ing LVs was as an aid to understanding the evolution
of ensembles of random initial perturbations (Snyder et
al. 2003) and the statistical characteristics of analysis
error (Hamill et al. 2002) in this same quasigeostrophic
model.

Excluding results from low-order models, little is
known about the Lyapunov stability of atmospheric
flows. Several studies have employed the same three-
layer, quasigeostrophic, hemispheric model truncated at
T21 (Vannitsem and Nicolis 1997; Swanson et al. 1998;
Reynolds and Errico 1999). This note complements and
extends those previous studies by characterizing the
structure of the leading Lyapunov vectors and their re-
lation to the unperturbed flow, and by using a different
quasigeostrophic model, with different geometry, dif-
ferent forcing and more degrees of freedom.

2. Background

To fix ideas, let the unperturbed flow evolve ac-
cording to

dx /dt 5 f(x), (1)

where (t) is the state of the flow in some discrete, finite-x
dimensional representation (such as spectral compo-
nents or gridpoint values). We will comment in the con-
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cluding section on the relation of results from finite-
dimensional systems to infinite-dimensional or contin-
uous systems such as the atmosphere.

Infinitesimally small perturbations x then satisfy dx/
dt 5 Ax with A given by the Jacobian matrix of f with
respect to ; this relation may in turn be integrated overx
a time interval [t, t] to yield

x(t) 5 M(x , t, t)x(t), (2)

where M is the propagator or resolvent matrix and de-
pends on the unperturbed solution and the time interval.

We are then concerned with the behavior of solutions
of (2) as t 2 t → `. An excellent introduction to the
theory as well as further references can be found in
Legras and Vautard (1995). Here, we briefly review the
points of importance to what will follow.

There are two key results. First, almost any initial
perturbation will amplify exponentially at a rate that
tends, when averaged over a sufficiently long interval,
to a specific values l1, which is called the leading Lya-
punov exponent. This exponent is a property only of
(1) and is independent of both the norm chosen to mea-
sure the perturbation amplitude (for finite-dimensional
systems) and the specific unperturbed solution (exceptx
for a set of measure zero). Second, almost any pertur-
bation initialized far in the past will converge at a future
time t to a specific direction, given by the unit vector
w1(t). This is the leading LV, which depends on t and
implicitly on .x

More generally, there exists a sequence of exponents
{li} and a corresponding set of orthonormal vectors
{wi} such that, given (almost) any set of N initial per-
turbations, the hypervolume defined by these pertur-
bations grows, on average, exponentially at the rate

li, and the subspace spanned by these perturbationsNSi51

converges after sufficient time to span {w1, . . . , wN}.
Because we require the LVs to be orthogonal, each wi

except the first depends on the choice of inner product.
Our numerical calculation of the exponents and the

corresponding LVs {w i} follows the standard method
(see Legras and Vautard 1995). Specifically, N initial
perturbations are integrated forward with the tangent
linear model linearized about the unperturbed solution,
with periodic orthonormalization, using a modified
Gram–Schmidt procedure and the total energy inner
product (as defined in Snyder et al. 2003). As the in-
tegration continues, the portion of the ith perturbation
that is orthogonal to the subspace of the first i 2 1
perturbations converges to w i and its average amplifi-
cation converges to li.

3. The unperturbed solution and the
quasigeostrophic model

The unperturbed solution consists of an interval of
480 days taken from the statistically steady state of a
damped and driven quasigeostrophic model. The char-
acteristics of the solution as well as the quasigeostrophic

equations and their numerical integration are described
more fully in Snyder et al. (2003).

In this model, the flow is periodic in x and is confined
between rigid surfaces at y 5 0, yL and z 5 0, H. The
flow is driven by relaxation of the potential vorticity1

(PV) to a baroclinic zonal jet and is damped by a com-
bination of Ekman pumping at the surface and a fourth-
order numerical dissipation applied to the potential vor-
ticity. Parameters are chosen as in Snyder et al. (2003);
in particular, the zonal periodicity is 16 3 103 km, the
width yL of the channel is 8 3 103 km, its depth H is
10 km, the relaxation has a timescale of 20 days, and
the ‘‘relaxed’’ zonal jet has a maximum velocity of 60
m s21. The numerical model uses a gridpoint discreti-
zation with 128 points in x, 64 in y, and 8 in z.

In the statistically steady state, solutions to this model
are characterized by a strong baroclinic jet in the central
portion of the channel that intensifies from the surface
to the lid. The flow is turbulent and exhibits an ap-
proximate power-law dependence of the velocity vari-
ance at channel center on zonal wavenumber (see Fig.
3 of the following section). Meanders or waves move
along the jet from east to west, with zonal wavenumbers
3 or 4 (in units of periods per channel length) domi-
nating. These waves organize into packets and frequent-
ly break to form cutoff eddies in both PV and stream-
function. Further discussion, together with snapshots of
the flow, can be found in Snyder et al. (2003; see also
Fig. 4 here).

The structure of the PV in the statistically steady state
is qualitatively similar to that of the midlatitude tro-
posphere, as discussed, for example, in Hoskins et al.
(1985). In particular, the horizontal PV gradient at z 5
H is concentrated along the jet, so that the jet marks an
abrupt change between regions of relatively uniform PV;
the same is true to a lesser extent at the surface. Com-
pared to those near the boundaries, however, PV gra-
dients in the interior of the flow are small. This structure
of the PV will turn out to control the structure of the
leading LVs, as will be discussed in the following sec-
tion.

4. Lyapunov exponents and vectors

a. Lyapunov exponents

Figure 1 shows estimates of the first 60 Lyapunov
exponents, {li, i 5 1, . . . , 60}. The leading exponent
implies an (asymptotic) doubling time for perturbations
of about 2 days. Of the remaining exponents, 35 are
positive, so that the unstable subspace has dimension
approximately 36, compared to the O(105) degrees of
freedom in the numerical model.

The exponents shown in Fig. 1 should be considered

1 Throughout this article, PV will refer to the generalized PV that
includes contributions from the potential temperature at z 5 0, H, in
the manner of Bretherton (1966).
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FIG. 1. The first 60 Lyapunov exponents calculated over the time
interval 0 # t # 240 days (dots), and the first 20 exponents over the
interval 240 days # t # 480 days (crosses).

FIG. 2. (a) Time- and area-averaged potential enstrophy Q as a
function of height, averaged over the first 20 Lyapunov vectors (solid
line) and for deviations of the unperturbed solution from its zonal
mean (dotted). (b) As in (a), but for the time- and area-averaged total
energy E. The amplitude of the Lyapunov vectors has been scaled
so that the vertical integral of Q(z) or E(z) is equal to that based on
the deviations from the zonal mean.

estimates only, because they are based on an integration
over the finite time interval 0 # t # 240 days. As shown
in Fig. 1 (crosses), the leading exponent calculated on
the interval 240 days # t # 480 days differs by 1%
between the intervals, while the second exponent differs
by 8%.

Our results may be compared with those of Vannitsem
and Nicolis (1997), who found a leading exponent
roughly half as large (0.23 day21) and an unstable sub-
space of more than twice the dimension (103) in a dif-
ferent quasigeostrophic model with O(103) degrees of
freedom. There are a number of possible reasons for
these differences. First, our model and theirs differ in
the spatial extent of the domain and also in the intensity
of the forcing that maintains the flow (although a direct
comparison of the intensity is problematic, as the two
models are forced in markedly different ways); both
factors are known to influence the Lyapunov exponents
(see Cross and Hohenberg 1993, section VII.C). In ad-
dition, results from both the models are sensitive to the
magnitude of dissipation. Vannitsem and Nicolis show
that the leading exponent and the dimension of the un-
stable subspace can both be more than halved if they
choose larger dissipation. In our model, halving the res-
olution and increasing the fourth-order diffusion (re-
quired for numerical stability) also roughly halves the
exponent. We emphasize, however, that our main con-
cern is the structure of the LVs, which we believe has
generic features, and not the precise magnitude of the
leading exponent or dimension of the unstable subspace,
which are clearly dependent on details of the model.

b. Time-averaged characteristics of Lyapunov vectors

The variation with height of the LV amplitude is
shown in Fig. 2, in terms of both potential enstrophy
(that is, the squared PV) and total energy. Values shown
are averages over the first 20 LVs and over 21 times,
each separated by 10 days and beginning at t 5 40 days.
(Since there is little variation and no systematic trend

among the LVs, averages over the first 20 LVs suffice
to characterize the structure of each.) The figure also
displays potential enstrophy and energy for deviations
of the unperturbed solution from its zonal mean.

The potential enstrophy of the leading LVs is dom-
inated by the top and bottom boundaries, where rms
variations of the PV are a factor of 10 larger than in
the interior. Consistent with the streamfunction that
would be obtained by inverting such a distribution of
PV, the energy is also maximized at top and bottom and
decays into the interior. The unperturbed solution shares
both these characteristics.

Thus, both the leading LVs and the unperturbed so-
lution appear to be controlled by the PV at the bound-
aries with only a secondary contribution from the in-
terior. Direct inversions of either the boundary or in-
terior PV alone confirm that the flow arises mainly from
the boundary PV, although the flow associated with the
interior PV is not negligible. In this respect, both the
leading LVs and the unperturbed solution resemble the
midlatitude troposphere, where PV anomalies at the sur-
face and tropopause are the primary dynamical agents
(e.g., Hoskins et al. 1985; Davis 1992).

In the horizontal, the leading LVs possess noticeably
finer scales than the unperturbed solution. As shown in
Fig. 3, the kinetic energy spectrum at z/H 5 1 and along
the channel center peaks at wavenumber 4 for the LVs
instead of wavenumber 3, and has a much shallower
slope in the inertial range (roughly 5 # k # 30). This
shallower slope is in accord with the predictions of clo-
sures for two-dimensional turbulence; Métais and Les-
ieur (1986) note that perturbations should develop a k21

dependence in contrast to the k23 decay of the turbulent
flow.
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FIG. 3. The time-averaged power spectra for (nondimensional) ki-
netic energy at y 5 yL/2 and z/H 5 1. The solid line shows the mean
of the first 20 Lyapunov vectors and the dotted shows the unperturbed
solution. The amplitude of the Lyapunov vectors has been scaled so
that the total energy is equal to that of the unperturbed solution.

FIG. 4. Contours are shown at 1/4 and 3/4 of the (arbitrary) max-
imum amplitude (solid lines; negative values dotted). Gray lines are
PV contours at z/H 5 1 for the unperturbed solution; the contour
interval corresponds to about 20 K of potential temperature on the
tropopause. The upper, middle, and lower panels show t 5 120, 140,
and 160 days, respectively.

FIG. 5. The correlation, as a function of time, of the square of the
PV at z/H 5 1 for the leading Lyapunov vector with the magnitude
of the horizontal gradient of the unperturbed PV at the same level.

c. Instantaneous structure of Lyapunov vectors

We next consider the relation of the first LV to the
instantaneous flow in the unperturbed solution. Figure
4 shows the PV at the model top for w1 and the un-
perturbed solution at t 5 120, 140, and 160 days; these
times were chosen merely as the center of the interval
over which exponents and vectors were calculated.

A striking property at each of the times is the con-
centration of the perturbation where the unperturbed PV
gradient is large. An objective measure of the relation
of w1 to unperturbed PV gradients is the correlation of
the absolute value of the perturbation PV with the mag-
nitude of the unperturbed PV gradient. This correlation
averages about 0.6 over the 240-day interval; a 40-day
time series is shown in Fig. 5. The concentration of w1

along the unperturbed PV gradient varies in time, but
is clearly not limited to the times shown in Fig. 4.

Moreover, the perturbations are not instabilities or
waves of finer scale superimposed on the unperturbed
gradient: if we follow a contour of unperturbed PV, the
perturbations have scales comparable or identical to the
unperturbed solution. In directions parallel to the local
PV gradient, however, perturbations are highly com-
pressed. (It is this compression gives rise to the rela-
tively flat energy spectrum of the perturbations.) Thus,
w1 often simply represents a displacement or phase shift
of features in the unperturbed solution.

In Fig. 4a, for example, w1 is strongly correlated with
the x derivative of the unperturbed solution. Adding the
perturbation to the unperturbed solution would thus shift
zonally both the cutoff feature at x 5 8000 km and,
because it includes an intrusion of low PV that gives
rise to a positive–negative–positive pattern of the de-
rivative, the leading edge of the trough at x 5 6000 km.
Although the other examples shown in Fig. 4 are less
clear-cut, the general principle is clear. Snyder and Joly
(1998) and Snyder (1999) give further examples of per-

turbations that grow as displacements or modifications
of existing finite-amplitude features in an unperturbed
flow.

The structure of the LVs in terms of other fields fol-
lows from the characteristics of the PV perturbations
through the inversion of PV for streamfunction. The
streamfunction perturbations are thus smoothed versions
of the PV perturbations—they tend to be large where
the unperturbed PV gradients are large, they have scales



15 FEBRUARY 2003 687S N Y D E R A N D H A M I L L

FIG. 6. Two-day amplifications for the leading Lyapunov vector
(solid line) and for the first and last singular vectors (dots) constrained
to the subspace spanned by the leading 20 Lyapunov vectors. Am-
plifications are for the (square root of ) total energy.

comparable to those of the unperturbed streamfunction,
and they often represent modifications or displacements
of existing features. In the vertical, the streamfunction
for w1 inherits the smooth interior structure and (typi-
cally) weak westward tilt with height of the baroclinic
waves in the unperturbed solution.

Finally, all of the above characteristics are shared at
least qualitatively by LVs beyond w1. The time-aver-
aged correlation of the perturbation PV with the un-
perturbed PV gradient, for example, is between 0.5 and
0.6 for all of the first 60 LVs. The only systematic trend
is that the first few LVs tend to be more spatially lo-
calized.

d. Singular vectors confined to a Lyapunov subspace

It is well known that, over a given finite time interval,
there will be perturbations that amplify at a rate greater
than l1. For example, as illustrated by Fig. 6, the local
(in time) amplification of w1 may be substantially larger
or smaller than that implied by l1. In addition, LVs
other than w1 may have the largest amplification over
a given time interval [see Fig. 4 of Vannitsem and Ni-
colis (1997)].

It is straightforward to calculate the perturbation
within a given subspace that amplifies most under lin-
earized dynamics over a given time interval.2 This per-
turbation is the leading singular vector for the propa-
gator M constrained to the chosen initial subspace, and
more generally, the calculation yields a set of singular

2 Let W(t) be the matrix whose ith column is wi(t) for the N LVs
(or indeed let those columns be any set of orthogonal unit vectors
spanning a subspace of interest). Next, define X(t) 5 M(t, t)W(t) and
perform a singular value decomposition on X, so that X 5 USVT

where S 5 diag(s1, . . . , sN) and U and V are orthogonal matrices.
The maximum amplification is then and the perturbation that1/2s1

achieves this is Wv1, where v1 is the first column of V. In general,
the columns of WV are the initial singular vectors for the interval [t,
t] constrained to the column space of W.

vectors that span the chosen initial subspace. Swanson
et al. (2000) present a similar calculation in the context
of a different quasigeostrophic model.

The maximum and minimum amplification factors for
the subspace spanned by the first 20 LVs are also shown
in Fig. 6 for a sequence of 2-day intervals. On average,
the maximum amplification is 6.1, as compared to the
2-day amplification of about 2 implied by l1. In addi-
tion, there is typically a perturbation that decays by
about a factor of 2 over the same intervals, even though
all the perturbations in the subspace grow asymptoti-
cally. For the subspaces spanned by the first 35 and first
60 LVs, the average maximum amplifications are 7.6
and 9.4, respectively, and the average minimum am-
plifications are 0.37 and 0.28.

The structure of the perturbation with largest ampli-
fication is, not surprisingly, qualitatively similar to that
of the leading LVs. In particular, its PV is strongly cor-
related with the unperturbed PV gradient and it pos-
sesses scales (at least along PV contours) comparable
to the unperturbed solution. The perturbation with larg-
est amplification also typically does not resemble any
single LV, but has significant projection on several.

5. Summary and discussion

For the quasigeostrophic baroclinic jet considered
here, the leading LVs inherit many characteristics of the
unperturbed flow. In particular, like the unperturbed
flow, the LVs have strongest PV perturbations at the
upper and lower boundaries. Consistent with this PV
structure, the wind and temperature perturbations are
also maximized at the boundaries and decay into the
interior.

A key finding is that the PV perturbations associated
with the leading LVs are strongly correlated with the
unperturbed PV gradient. Qualitatively, these PV per-
turbations take the form of long strips, with scales com-
parable to those of the unperturbed flow, lying along
contours of unperturbed PV in regions of large PV gra-
dients. Adding such perturbations to the unperturbed
solution displaces the PV contours coherently on the
length scales of features in the unperturbed flow. Thus,
the LVs represent local displacements or modifications
of jets, waves and vortices that exist in the unperturbed
solution. Snyder et al. (2003) discuss in more detail the
tendency for perturbations to correlate with the unper-
turbed PV gradient.

To further illustrate the form of the LVs, consider the
extreme example of a collection of point vortices in two-
dimensional nondivergent flow. This system is chaotic
and small changes to the initial conditions will grow
(on average) exponentially. Regardless of the form of
the initial perturbation, however, a perturbed solution
will eventually differ from an unperturbed solution only
in the locations of the vortices. [Boffetta et al. (1997)
show decaying two-dimensional turbulence behaves
analogously, in that small perturbations predominantly
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produce displacements of the coherent vortices.] The
LVs for the baroclinic jet considered here are similar,
but may change the amplitude or shape, as well as the
location, of coherent structures in the flow.

A natural question is the relation between properties
of our discretized system and those of the continuous
partial differential equations (PDEs) for quasigeostroph-
ic flow. There is no general theory available that de-
scribes the correspondence between LVs and Lyapunov
exponents for a PDE and those for a discrete system
approximating the PDE. In the present quasigeostrophic
model, we expect that the leading Lyapunov exponent
and the dimension of the unstable subspace will increase
indefinitely in the limit of increasing model resolution
and decreasing model dissipation, and that the leading
LVs will decrease in scale. Heuristically, this is because
smaller spatial scales have faster timescales, at least
until the dissipation scale is reached (Hoyer and Sa-
dourny 1982, their section 5). Thus, our results are likely
to apply directly only to sufficiently coarse-grained or
dissipative quasigeostrophic solutions. In the real at-
mosphere, of course, there are numerous processes, such
as moist convection, that will also likely cause rapid
divergence of solutions on subsynoptic scales, but which
are not included in quasigeostrophic dynamics. Char-
acterizing the LVs for higher-resolution and more re-
alistic atmospheric flows remains for future work.

One point that we have touched upon only tangen-
tially is the mechanism by which the LVs grow. As
noted in section 4c, the simplest analogy with instabil-
ities on parallel flow seems inappropriate. Another pos-
sibility is the notion of Farrell and Ioannou (1999) that
the growth of the LVs is a consequence of the time
dependence of the unperturbed flow. While there is
nothing in our results to contradict this, it is not obvious
how to extend to the present case their examples, which
simply make the basic-state time dependent in the par-
allel flow problem. A final possibility is the view put
forward by Snyder and Joly (1998) and Snyder (1999),
in which attention is focussed on flows with finite-am-
plitude structures and the potential for perturbation
growth via displacements or modifications of those ex-
isting features. This view fits with the phenomenology
of the LVs (see also Boffetta et al. 1997), but at present
falls short of a comprehensive theory for the LVs.
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